Expert Crowd Support Systems for Software Developers

YAN CHEN, STEVE ONEY, WALTER S. LASECKI, University of Michigan, Ann Arbor

1. INTRODUCTION

Software programming requires strong logical reasoning, proficiency in programming syntax, and a
great deal of coding experience. In order to make software development more efficient, developers
often seek programming support from various resources, such as the Web and other programmers
[Hartmann et al. 2010]. However, our previous studies have shown that current support tools are
limited for many of the types of requests developers would like to make, such as high-level advice,
personalized help, or project-specific code segments [Chen et al. 2016].

Current IDE tools like Blueprint [Brandt et al. 2010] provide contextualized, easily-accessible, and
on-demand support for developers, but are generally limited in the types of feedback they can provide
(e.g., syntax error highlighting and function auto-complete) because the system cannot truly under-
stand user queries or the context of the problem. Recruiting a programming helper can provide per-
sonalized support for specific requests, real time interactions and feedback, and even the ability to
hand off sub-tasks for independent completion. However, in addition to the monetary price of hiring a
freelancer, current hiring processes take significant time and preparation effort costs (interviews, on-
boarding, etc.). Furthermore, none of these helper solutions provide the in-context support that IDEs
do, adding the need for an additional context switch to and from a developers workflow.

To overcome these limitations, we propose a new class of support systems for software developers
to request on-demand help by expert crowds. Unlike automated IDE tools, expert crowds can provide
high-level feedback about code by inferring and considering the end-user developer’s intent. Unlike de-
veloper forums, on-demand developers can provide rapid responses and write project-specific code seg-
ments (which is often explicitly discouraged in developer forums). This paper describes three studies
that help inform the design of on-demand developer support systems. We then discuss the implications
draw from the results and conclude with design guidelines for future systems.

2. EXPLORATORY STUDIES

We conducted studies to inform design of each of the three main stages of help seeking: users forming
a request, the worker response process, and users integrating responses. To minimize the affects of
prior expertise between subjects, our studies used a new programming language that we generated
from parts of multiple existing languages. In this section, we describe each of our studies.

2.1 Study 1: Developers’ Input Methods

To find out what methods allow developers to make requests easily and quickly, we compared three
request modalities for describing requests: 1) speak the request (Voice), 2) type the request (Text),
and 3) choose the request from a fixed set of options (Multiple Choice). We also compared two context
selectors for specifying a request’s context: 1) select a segment of content (Highlight), and 2) point
to one location in the content (Click). The multiple choice options are pre-selected from the types of
request that we found in our previous studies [Chen et al. 2016], and the multiple location options are
the most common programming language constructors.

Collective Intelligence 2016.

1:2 . Y. Chen, S. Oney and W.S. Lasecki

voice (average/s.d.) text multiple choice
highlight 10.99/2.61 45.46 / 25.29 14.97/13.11
click 14.02/3.65 37.49/23.14 27.83/18.00
without context selector 21.48/8.41 33.91/17.40 25.09/9.48

Table I. : Time to make a request for each condition (average and standard deviation).

Combining these request modalities and context selectors, we designed a 3x2 condition matrix for
our experiment, with another set of conditions that has only the modalities with no context selectors.
Given three programming tasks, participants could either speak, type, or select the given options to
make a request if they need help with the tasks. We recruited two to three workers from Upwork for
each condition, and recorded the duration and content of each request, and editor activity.

We observed that the Text requests took the longest time to make on average because the effort of
typing and better constructing the requests. (Table I). Multiple Choice has very diverse results, which
could take from a couple of seconds to half a minute. We found that this diversity is associated with
the familiarity of the list of options for developers. The time spent on Voice requests is uniform with
around 10 to 30 seconds on average. We observed that this is often because the audio requests are less
prepared and more informal.

For different context selectors, we found that participants spent more time making requests in con-
ditions with only requests than in conditions with context selectors because of the time spent adding
context. Two annotators annotated each request with a set of rubric to compare which condition gen-
erated more clear and understandable requests. We found that nearly 30% of Multiple Choice requests
were implied (with confident of x = 0.65) and more than 40% of Multiple Choice requests were unclear
(with confident of x = 0.83). This makes sense because software development is a dynamic task that is
impossible to have a finite list of options to capture all the possible requests. This suggested that when
making requests during development, Multiple Choice mode is not as efficient as Text and Voice mode.
Therefore, using Voice and Text would be better options to use to support request making in future
systems. These support systems should optimize the trade-offs between speed of making a request and
content of requests, and also add content highlighting as reference interaction in the final system.

2.2 Study 2: Helpers Response Methods

To better understand the trade-offs between different methods that helpers can use to respond to re-
quests, we designed an experiment with four conditions to compare three most commonly used methods
of response writing: 1) select a segment of the content and click a button to write annotation associated
with it (add annotation), 2) write an explanation in a text box outside of the editor (add explanation),
and 3) add inline code or comments (code inline).

Based on the common requests that participants made in Study 1, we developed three tasks (devel-
oper requests to respond to) and asked participants to respond to them using the documentation of the
synthesized programming language. We hired 12 participants with three for each condition, recorded
their performance and conducted a post-task interview.

Our major findings are shown in Table IT where we computed the usage of each response format
quantitatively and analyzed feedback from interview. Additionally, among the six participants who
did not use a consistent response format during the study, four of them started with one method for
task 1, and then used annotation for task two, and then switched back to the first method for task 3.
Based on this pattern and participants’ later reports, we found the usage of response format depends
on the types of requests. For example, a general question is better to use explanation to respond and a
request relates to a specific line of code is better to use annotation. Code inline is good for code request
where one can explain the code in natural language along with his editing. The takeaway is that these

Collective Intelligence 2016.

Crowd Supporting Systems for Software Development o 1:3
Study 2: developers’ angle
of subjects
" # of requests that used this | that used this . .
condition method among all sessions method for all characteristics observation
tasks T Foood
annotation 8 1 - lor spectlic code request is informally written
2. for short response
. 1. for general questions request is informally written
lanat 18 3
explanation 2. for b?th sl(liort&long response | more contextual information
code inline 13 2 L. for code request use both comments and code

2. for complicated task

Study 3: helpers’ angle

time for av. missed . .
. : . k
condition integration | steps (of 3) advantages disadvantages needs / design takeaways
Lno interruption 1.only short response 1.discourage long response
annotation > 10 min 0 2.clear context and -onty P T age long resp
. 2. # responses cannot scale | 2. high visibility
connection 1 T
1.no interruption 1.no direct reference e;:?i(;uizf’;i 0 answer gen-
explanation > 10 min 0.5 2. better for long re- | 2. more navigation and reau C .
sbonse mapping effort 2.minimize the navigation
P effort when visualizing
1. discourage large scale
code inline < 10 min 0 1. less navigation effort 1. code interruption response
2. encourage code example

Table II. : Some pros and cons of three response formats from both helpers and developers’ angle, and design takeaways.

three methods complement with each other. The trade-offs between them depends on the types of the
requests and helpers preference.

2.3 Study 3: Developers Integration Methods

To understand these three response methods (annotation, explanation, and code inline) from devel-
opers’ perspective, we observed how developers integrate the same responses written in different for-
mats. We ran the same four-condition experiment with one multi-step task, which contains subtasks
that would be better to represent in one of the three formats.

To make sure the response in different formats contain the same amount of information, we devel-
oped two rules that take the same response and converted it into different formats. When converting
annotation and code inline to explanation, we use line number to specify the reference; and we added
or annotate the explanation at the beginning of the codebase when converting explanation to code in-
line and annotation, respectively. We recruited eight participants with two for each condition, and we
recorded their screen video when they performed the study, and conducted a post-task interview.

Participants mentioned pros and cons for different response methods. For example, annotation can
strongly connect responses with content, which complements explanation format’s flaw by reducing
the process of mapping response to code. Additionally, it does not interrupt the original code base as
code inline response would do. However, it loses its advantages when either the total number of it
or the content length is scaled. Explanation format does not interrupt the original codebase, and it
works well for both long and short responses. Compared to annotation and explanation, inline code
allowed participants to finish the task more quickly on average. This is because participants did not
miss tracking the responses.

We summarized the pros and cons for each response format and drew design implications from the
results that facilitate future system development (Table II). When developing the integration part
of the support systems, one should consider the speed of integration, correctness of responses, and
understandability of responses as three major factors.

Collective Intelligence 2016.

1:4 . Y. Chen, S. Oney and W.S. Lasecki

3. RELATED WORK

Many tools have enabled crowds to aid in complex tasks. Chorus [Lasecki et al. 2013] uses continu-
ous crowdsourcing to enable on-demand conversational interaction by recruiting multiple workers for
conversational interactions with users. Apparition [Lasecki et al. 2015] enables prototyping interac-
tive systems in real-time by introducing self-coordination mechanism to reduce task conflict among
workers. Latoza et al. [LaToza et al. 2014] developed CrowdCode, which decomposes programming
into self-contained function-based microtasks. In CrowdCode, clients make requests to the crowd with
self-written specifications of the desired function’s purpose and signature. Crowd workers are then au-
tomatically assigned to these tasks. However, such a system is limited in how much it can reduce the
end user’s time expenditure, since the request authoring process requires a detailed problem specifi-
cation. Having the crowd to efficiently assist programming has been challenging in terms of qualified
worker recruitment and efficient work evaluation. Collabode [Goldman et al. 2011] allows users to de-
fine function-based microtasks, including testing and debugging a function, which allows workers to
evaluate the previous work. It also provides workers the choice of skipping the microtasks that do not
match with workers’ skill sets. However, the tool does not grant helpers the ability to choose the tasks
that fit the best for them, and also the developers should assess the response instead of other workers.

4. CONCLUSION

In this paper, we proposed a new class of support systems for software developers to request on-demand
help by expert crowds. Additionally, we described three studies that investigated the trade-offs between
different methods on different stages of help seeking. We then draw design guidelines to facilitate
future systems development.

REFERENCES

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010. Example-centric programming: integrating web
search into the development environment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 513-522.

Yan Chen, Steve Oney, and Walter Lasecki. 2016. Towards providing on-demand expert support for software developers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM.

Max Goldman, Greg Little, and Robert C Miller. 2011. Real-time collaborative coding in a web IDE. In Proceedings of the 24th
annual ACM symposium on User interface software and technology. ACM, 155-164.

Bjorn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. 2010. What would other programmers do: suggesting
solutions to error messages. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1019—
1028.

Walter S Lasecki, Juho Kim, Nick Rafter, Onkur Sen, Jeffrey P Bigham, and Michael S Bernstein. 2015. Apparition: Crowd-
sourced user interfaces that come To life as you sketch them. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems. ACM, 1925-1934.

Walter S Lasecki, Rachel Wesley, Jeffrey Nichols, Anand Kulkarni, James F Allen, and Jeffrey P Bigham. 2013. Chorus: a
crowd-powered conversational assistant. In Proceedings of the 26th annual ACM symposium on User interface software and
technology. ACM, 151-162.

Thomas D LaToza, W Ben Towne, Christian M Adriano, and André Van Der Hoek. 2014. Microtask programming: Building
software with a crowd. In Proceedings of the 27th annual ACM symposium on User interface software and technology. ACM,
43-54.

Collective Intelligence 2016.

